С3а в цементе что это?

С3а в цементе что это?

С3а в цементе что это?

Технологическая схема производства сульфатостойких портландцементов не отличается от технологии получения портландцемента, однако при их выпуске осуществляется особо строгий производственный контроль. При подборе химико-минералогического состава сульфатостойкого портландцемента учитывали результаты исследований коррозиеустойчивости цементов различного состава при твердении в агрессивных средах.
Для повышения стойкости цемента при действии сульфатных растворов большое значение имеет минералогический состав исходного клинкера. Исследования показали, что сульфатостойкость портландцемента достигается при пониженном содержании С3А и умеренном количестве C3S. Исследовалась коррозиеустойчивость синтетических клинкерных минералов в растворах сульфатов натрия, кальция и магния; показателем явилось время, необходимое для получения опасного расширения до 0,5% особо тощих цементных растворов состава.
Установлено также, что положительное влияние на сульфатостойкость оказывает добавка 10% трепела. Можно видеть, однако, что одно лишь понижение содержания С3А в исходном клинкере не обеспечивает сульфатостойкость портландцемента. Это объясняется тем, что при низком содержании С3А в цементе возможна не только гидросульфоалюминатная, но и гипсовая коррозия, поскольку гидратация C3S приводит к образованию значительного количества гидроксида кальция, создающего благоприятные условия для кристаллизации гипса. Так, например, цемент, содержащий 41% C3S и 5% С3А (без добавки трепела) обнаруживает при твердении в растворе сульфата натрия с концентрацией до 4000 мг/л большую коррозиеустойчивость, чем цемент с 3% С3А и 52% C3S, а также с 4% С3А и 48% C3S. Поэтому для снижения химической агрессии важно также по возможности уменьшать содержание C3S.
Известное значение имеет количество C4AF. Если его много, то цемент оказывается чувствительным к действию сульфатов, но он, несомненно, более устойчив, чем кристаллический С3А. При нормировании состава сульфатостойкого портландцемента необходимо также учитывать и то, что он должен обладать повышенной морозостойкостью и пониженной экзотермией. При оценке сопротивляемости цементов попеременному действию замораживания и оттаивания при наличии сульфатной агрессии следует учитывать, что при испытаниях оттаивание образцов в агрессивной среде резко снижает показатели моростойкости. Так, например, наши исследования показали, что образец портландцементпого раствора 1:3 при оттаивании в пресной воде выдерживает более 200 циклов, а при оттаивании в морской — только 30 циклов.
В теплом климате, где морозостойкость не играет заметной роли, в зонах бетона, находящихся в переменном уровне воды, происходит попеременное насыщение агрессивной водой бетона и последующее его высушивание. При этом проявляется также совокупное действие физических и химических факторов агрессии. Основная причина разрушения в данном случае кроется в действии преимущественно физических факторов, которые вызывают оседание солей агрессивной среды в порах цементного камня и их кристаллизацию, сопровождающуюся значительными объемными деформациями.
Повышение сульфатостойкости цементов, которое наблюдается при замене С3А на C4AF, увеличении количества стекловидного С3А за счет кристаллического С3А, введении активных минеральных добавок и пропаривании объясняется образованием гидрогранатов, устойчивых к действию сульфатов. Установлено, что с повышением температуры возможны более сильные разрушения.
Пропаривание несколько улучшает, а запаривание в автоклаве значительно повышает сульфатостойкость. Проводились исследования, в которых устанавливалось время, необходимое для того, чтобы наступало расширение при твердении в сульфатных растворах цементных образцов состава 1:10, предварительно твердевших в течение 24 ч в воде, а также при обработке насыщенным паром при атмосферном и повышенном давлении.
Эти данные свидетельствуют о благоприятном влиянии тепловлажностной обработки на сульфатостойкость, так как при автоклавной обработке гидроксид кальиия цемента реагирует с кремнеземом, содержащимся в заполнителях бетона; при карбонатном заполнителе тепло-влажностная обработка не повышает сульфатостойкость. Автоклавная обработка способствует также кристаллизации более стойких гидросиликатов кальция повышенной основности, а также образованию в результате гидратации клинкерного стекла гидрогранатов, отличающихся высокой сульфатостойкостью. При этом следует учитывать, однако, что тепловлажностная обработка обычно не способствует повышению морозостойкости цементного камня.
Относительно низкую сульфатостойкость можно повысить введением золы-уноса. Сульфатостойкие цементы обладают по сравнению с обычным повышенной сульфатостойкостью и пониженной экзотермией при замедленной интенсивности твердения в начальные сроки.
Цементная промышленность выпускает сульфатостойкие цементы, которые по вещественному составу подразделяются на сульфатостойкий портландцемент, сульфатостойкий портландцемент с минеральными добавками, сульфатостойкий шлакопортландцемент. Чтобы определить пригодность активных минеральных добавок для получения сульфатостойких портландцементов, измеряют расширение образцов цемента с исследуемой добавкой, твердевшего в агрессивных средах.
По механической прочности цементы подразделяются на марки: 300, 400 и 500. Наибольшим пределом прочности при изгибе — 6,0 МПа — обладает сульфатостойкий портландцемент с минеральными добавками марки 500. Сульфатостойкий шлакопортландцемент характеризуется более высоким коэффициентом коррозионной стойкости.
Сульфатостойкие портландцемента характеризуются более низким выделением тепла при гидратации и применяются, главным образом, в массивных элементах гидротехнических сооружений, где требуется пониженная экзотермия. В некоторых странах выпускаются специальные низкотермичные цементы; у нас сульфатостойкие портландцемента являются и низкотермичными, поскольку содержание в них наиболее «термичных» клинкерных фаз — С3А и алита ограничивают за счет соответствующего увеличения количества белита и алюоферрита кальция.
Объем производства этих видов цемента ограничен в связи с тем, что на большинстве цементных заводов нет глинистого компонента с низким содержанием глинозема, при котором в процессе обжига на беззольном топливе можно получать клинкер, содержащий менее 5% 3СаО-Аl2O3. Сложность задачи получения сульфатостойкого клинкера состоит еще в том, что в нем ограничивается и содержание C4AF, так что количество оксида железа в клинкере должно быть также умеренным.
Удельная поверхность цемента должна быть обычной (2500—3000 см2/г). Следует обеспечить получение цементного камня, отличающегося пониженной усадкой, а также высокой плотностью и водонепроницаемостью и соответственно повышенной морозостойкостью и сульфатостойкостью. Заметное влияние на повышение морозостойкости сульфатостойких портландцементов при испытании в бетоне оказывают длительность предварительного твердения до начала испытаний, значение В/Ц и удельный расход цемента. А. М. Подвальный, развивая представления о морозном разрушении бетона, показал, что увеличение объема цементного камня в бетоне приводит к повышению его морозостойкости.
В особо суровых условиях попеременного замораживания и оттаивания в морской воде при большой частоте циклов для достижения высокой морозостойкости в состав цемента или бетона вводят добавки. Это поверхностно-активные вещества: сульфитно-дрожжевая бражка, мылонафт, смола нейтрализованная воздухововлекающая (СНВ), 50%-ная кремнийорганическая эмульсия ГКЖ-94 и др. При испытании пропаренных образцов бетона на сульфатостойком портландцементе в суровых условиях Баренцева моря были получены весьма благоприятные результаты при введении в его состав 0,01—0,05% СНВ от массы цемента. Аналогичный эффект получен в тех же условиях агрессии при применении 0,04—0,08% добавки ГКЖ-94. Особо высокая морозостойкость достигается при комплексных добавках СДБ и ГКЖ-94, СДБ и СНВ.
Сульфатостойкий портландцемент предназначается для бетонных и железобетонных конструкций наружных зон гидротехнических и других сооружений, работающих в условиях сульфатной агрессии, при систематическом многократном попеременном замораживании и оттаивании либо увлажнении и высыхании. Для подводных частей морских и океанских сооружений технически более рационально и экономично применять сульфатостойкий шлакопортландцемент. Нормативными документами допускается применение сульфатостойкого портландцемента в бетонах различной плотности для напорных и безнапорных сооружений при различной степени фильтрации грунта и агрессивности жидкой среды, характеризуемой высокой концентрацией ионов SO4-.

С3а в цементе что это?

Действующие стандарты Федерального правительства и Американского общества испытания материалов включают пять типов портландцемента.

Цемент типа I, упоминавшийся выше под названием стандартного (или обыкновенного) портландцемента, предназначается для обычных бетонных сооружений, где не требуются особые свойства, предусмотренные для остальных четырех типов. Прототипом этого цемента служит прежний цемент, производившийся в США. Цемент типа II может рассматриваться как разновидность обыкновенного портландцемента, но с ограничением допустимого содержания С3А и C3S, что позволяет повысить его сульфатостойкость и уменьшить тепловыделение. Цемент типа II до применения воздухововлекающих добавок считался наиболее подходящим для строительства бетонных дорог. Он называется иногда «модифицированным» цементом, или «умеренно сульфатостойким», или «умеренно термичным». Он был, например, применен на строительстве плотины Сентер Хилл Дам в штате Теннесси.

Цемент типа IV, который сейчас редко применяется, предназначен для массивных бетонных сооружений, для которых требуется малое тепловыделение. По сравнению с цементом типа II он должен содержать несколько меньше С3А и значительно меньше C3S. Его можно рассматривать как особую разновидность цемента типа II.

Цемент типа V, предназначенный для службы в условлях сильной сульфатной агрессии, также близок к цементу типа II, но отличается от него значительно ‘более низким пределом содержания СзА — до 5%.

Цемент типа III — быстротвердеющий — может рассматриваться с точки зрения химико-минералогического состава как разновидность цемента типа I с таким же содержанием СзА, но с несколько повышенным (практически) содержанием C3S. Он характеризуется значительно более высокой тонкостью помола, чем все другие цементы. В связи с этим он может содержать повышенное количество S03.

К этим пяти основным типам цемента следует прибавить еще шестой, который по своему составу может быть близок к одному из описанных выше, но отличается от них пониженным содержанием щелочей. Это так называемый низкощелочной цемент. Он применяется не всюду, а лишь в тех местах, где приходится иметь дело с очень реакционно способными кремнистыми заполнителями. Эти заполнители вступают во взаимодействие с окисями калия и натрия, присутствующими в некоторых цементах в заметном количестве, и образуют растворимое стекло, которое в силу своего сродства с водой порождает осмотическое давление достаточной силы, чтобы вызвать избыточное расширение и растрескивание бетона, сопровождающееся потерей прочности, эластичности и долговечности. О силе этих реакций и вреде, который они приносят сооружениям, можно судить по тому факту, что на ремонт плотины Паркер Дам, пострадавшей от реакции между щелочами и заполнителями, было израсходовано больше 1 млн. долларов. Как показывает опыт, расширение, вызываемое реакцией между щелочами и заполнителями, не приносит вреда в том случае, если цемент содержит меньше 0,6% щелочей (в пересчете на ЫагО). В связи с этим и были разработаны технические условия на так обозначениями I-A, И-А, и III -A (стандарт АСТМ С-175). С точки зрения состава эти разновидности ничем не отличаются от стандартных цементов I, II и III . Особенностью их является небольшая добавка воздухововлекающего вещества в количестве 0,01—0,03% от веса цемента, вводимая при помоле и служащая для вовлечения 19±3% воздуха при изготовлении стандартного раствора для испытаний. Бетон, изготовленный из этих цементов, в идеальном случае должен содержать от 3 до 6% вовлеченного воздуха, но в практических условиях строительства воздухововлечение бывает как больше, так и меньше указанных пределов.

Следует подчеркнуть, что цементы с воздухововлекающимн добавками дают бетоны повышенной удобообрабатываемости, долговечности и солгстойкости. Но вместе с тем эти добавки вызывают снижение прочности, особенно в тех случаях, когда бетон содержит избыточное количество вовлеченного воздуха. Поэтому в технических условиях на цементы I-A, II-A и III -A предусматриваются несколько более низкие требования к прочности при приемке. Для более подробного ознакомления с физико-механическими свойствами этих цементов следует обратиться к техническим условиям АСТМ и Федерального правительства. Укажем лишь попутно, что в технических условиях Федерального правительства были опущены требования к прочности при растяжении в связи с тем, что количество воды, необходимое для получения раствора нормальной консистенции, оказалось слишком большим и нельзя было изготовить образцы-восьмерки для испытаний в соответствии со стандартом АСТМ.

Различия в химическом составе пяти основных типов цемента обусловливают в свою очередь и разницу в активности и других свойствах. Пониженное содержание C3S в цементах II, IV и V приводит к заметному снижению их активности, в связи с чем они медленнее набирают прочность в течение первых 28 суток твердения. Зато после этого срока прочность их значительно увеличивается благодаря повышенному содержанию C2S. Это обстоятельство учитывается в технических условиях, которыми предусматривается, что прочность этих цементов в первые сроки твердения может быть несколько ниже, хотя удельная поверхность их довольно высока.. Низкое содержание С3А в этих трех цементах также отражается на их начальной прочности, так как известно, что С3А способствует нарастанию прочности в течение первых двух суток. Меньшая активность и прочность указанных трех цементов логически приводит к тому, что степень тепловыделения, т. е. теплота гидратации, у них соответственно понижается.

С точки зрения долговечности пониженное содержание С3А значительно увеличивает сопротивление бетона коррозионному воздействию сульфатов и щелочей. В тех местах, где сооружения подвергаются действию этих, сред, следует применять цемент типа II. В случаях особо сильной сульфатной агрессии можно заменить его цементом типа V. Однако нужно иметь в виду, что цемент типа V не всюду можно достать: его производство связано с известными трудностями. Если этого цемента на месте строительства нет, следует увеличить расход применяемого цемента при изготовлении бетона. Имеются данные о том, что воздухововлечение, наряду с значительным повышением долговечности бетона при попеременном замораживании и оттаивании, увеличивает и сульфатостойкость бетона. В связи с этим цемент II-A может успешно заменить цемент V в тех сооружениях, где требуется повышенная сульфатостойкость бетона. И в этом случае расход цемента должен быть достаточно высок.

Цемент типа IV — низкотермичный — также является специализированным продуктом, предназначенным для массивных бетонных сооружений, и может быть получен далеко не всюду. Кроме того, в виду трудности производства он дороже обыкновенного портландцемента. Иногда его можно заменить цементом типа II, если обеспечить при этом хороший состав бетона, предварительное охлаждение заполнителей и внутреннее охлаждение твердеющего массива. Полезно в этом случае применить и воздухововлекаю-щие добавки.

Иногда вместо цемента IV для массивных бетонных сооружений применяют цементы I или II в сочетании с пуццолановыми и воздухововлекающими добавками при меньшем расходе вяжущего. В других случаях просто уменьшают расход цемента I или II в бетоне без введения пуццолановых и воздухо вовлекающих добавок.

В США имеются еще и другие виды цементов, которые не охватываются стандартами АСТМ и служат для специальных целей. Для примера можно назвать медленно схватывающийся тампо-нажный цемент, при помоле которого вместо гипса добавляются специальные замедлители, обеспечивающие нормальные сроки схватывания цементного теста в условиях повышенных температур и давлений на глубине больше 2400 м. Другим примером может служить так называемый «пластичный» цемент для штукатурных работ. Из очень чистого известняка и глинистого сырья с крайне малым содержанием железа изготовляется белый портландцемент. Заслуживает внимания и специальный антибактериальный цемент, который содержит бактерицидную добавку, вводимую при помоле.

Марки цемента, их назначение и область применения

Особенности маркировки цемента Цемент различается по марке и по количеству добавок.

Марка цемента отображается аббревиатурой ПЦ или М, например М500 обозначает, что цемент пятисотой марки и выдерживает давление в 500 кг на кубический сантиметр.

Количество добавок отображается буквой Д и процентом содержания добавок. Соответственно Д20 — это цемент содержащий 20% добавок. Добавки влияют на пластичность цемента и прочностные характеристики.

Существуют также разновидности цемента, обладающие специфическими свойствами. Такой цемент маркируется определенной аббревиатурой:
Б – быстротвердеющий цемент;
СС – сульфатостойкий цемент;
Н – цемент на основе клинкера нормированного состава ( нормированный цемент).

Марки цемента, их назначение и область применения:

Цемент М500 Д0 применяется при производстве ответственных бетонных и железобетонных конструкций в промышленном строительстве, где предъявляются высокие требования к водостойкости, морозостойкости, долговечности. Цемент М500 Д0 эффективен при проведении аварийных ремонтных и восстановительных работ ввиду высокой начальной прочности бетона.

Цемент М500 Д20 Цемент М500 Д20 применяется в промышленном, жилищном и сельскохозяйственном строительстве для производства сборного железобетона, фундаментов, балок, плит перекрытий и др., а так же успешно используется для изготовления бетонных и строительных растворов, штукатурных, кладочных и других ремонтно-строительных работ. Цемент М500 Д0 обладает водостойкостью, морозостойкостью, пониженной сопротивляемостью коррозионным воздействиям по сравнению с обычным портландцементом.

Цемент М500 Д20-ПЛ

Цемент М500 Д20-ПЛ с минеральными добавками пластифицированный применяется в промышленном, жилищном и сельскохозяйственном строительстве для производства сборного железобетона, фундаментов, балок, плит перекрытий и др., а так же успешно используется для изготовления бетонных и строительных растворов, штукатурных, кладочных и других ремонтно-строительных работ. Цемент М500 Д20-ПЛ обладает водостойкостью, морозостойкостью, пониженной водопотребностью, повышенной сопротивляемостью коррозионным воздействиям по сравнению с обычным портландцементом.

Цемент М400 Д0 Цемент М400 Д0 используется для производства сборных бетонных и железобетонных конструкций с применением термовлажностной обработки, а также для бетонных, железобетонных подземных, надземных и подводных сооружений, подвергающихся действию пресных и минерализированных вод. Цемент М400 Д0 успешно зарекомендовал себя для изготовления бетонных и строительных растворов.

Цемент ПЦ 400 Д20 Цемент М400 Д20 применяется в промышленном, жилищном и сельскохозяйственном строительстве для производства сборного железобетона, фундаментов, балок, плит перекрытий, стеновых панелей и др. Цемент М400 Д20 обладает хорошей водостойкостью и морозостойкостью.

Быстротвердеющий цемент Быстротвердеющий цемент — это цемент, характеризующийся интенсивным нарастанием прочности в начальный период твердения. Применяется в основном для изготовления сборных железобетонных конструкций и изделий. Повышенная механическая прочность быстротвердеющего цемента в раннем возрасте твердения обусловливается соответственным минералогическим составом и микроструктурой клинкера, дозировкой добавок и тонкостью помола цемента.

Сульфатостойкий цемент Сульфатостойкий цемент , сульфатостойкий портландцемент, разновидность портландцемента. По сравнению с обычным портландцементом сульфатостойкий цемент обладает повышенной стойкостью к действию минерализованных вод, содержащих сульфаты, меньшим тепловыделением, замедленной интенсивностью твердения и высокой морозостойкостью. Сульфатостойкий цемент получают тонким измельчением клинкера нормированного минералогического состава. Предназначается для изготовления бетонных и железобетонных конструкций гидротехнических и др. сооружений, испытывающих воздействие агрессивной сульфатной среды ( например, морской воды), особенно в условиях переменного увлажнения, чередующихся замерзания и оттаивания.

Цемент, полученный на основе клинкера нормированного состава Для бетона дорожных и аэродромных покрытий, железобетонных напорных и безнапорных труб, железобетонных шпал, мостовых конструкций, стоек опор высоковольтных линий электропередач, контактной сети железнодорожного транспорта и освещения следует поставлять цемент, изготовляемый на основе клинкера нормированного состава с содержанием трехкальциевого алюмината ( С3А) в количестве не более 8% по массе.

Заказать любой товар можно по многоканальному телефону

Если по каким-то причинам Вам неудобно звонить — воспользуйтесь формой заказа обратного звонка!

Для этих изделий по согласованию с потребителем необходимо поставлять один из следующих типов цемента:
ü цемент М400 Д0 Н, цемент М500 Д0 Н для всех изделий;
ü цемент М500 Д5 Н для труб, шпал, опор, мостовых конструкций независимо от вида добавки. Для напорных труб необходимо поставлять цемент I или II группы по эффективности пропаривания согласно приложению А ГОСТ 10178-85;
ü цемент М400 Д20 Н, цемент М500 Д20 Н для бетона дорожных и аэродромных покрытий при применении в качестве добавки гранулированного шлака не более 15 %.

Начало схватывания портландцемента для бетона дорожных и аэродромных покрытий должно наступать не ранее 2 ч, портландцемента для труб — не ранее 2 ч 15 мин от начала затворения цемента. По согласованию изготовителя с потребителем допускаются иные сроки схватывания.

Интересные и нужные сведения о строительных материалах и технологиях

Быстротвердеющий портландцемент (БТЦ) — портландцемент с минеральными добавками, отличающийся повышенной прочностью через 3 сут твердения. Его выпускают М400 и 500. БТЦ обладает более интенсивным, чем обычный, нарастанием прочности в начальный период твердения. Это достигается путем более тонкого помола цемента (до удельной поверхности 3500. 4000 см 2 /г), а также повышенным содержанием трехкальциевого силиката и трехкальциевого алюмината (60. 65%). В остальном свойства его не отличаются от свойств портландцемента. БТЦ применяют в производстве железобетонных конструкций, а также при зимних бетонных работах. Ввиду повышенного тепловыделения его не следует использовать в массивных конструкциях.

Сульфатостойкий портландцемент применяют для получения бетонов, работающих в минерализованных и пресных водах. Его получают из клинкера нормированного минералогического состава. Содержание C3S не более 50%, С3А не более 5%. Введение инертных и активных минеральных добавок не допускается. Этот цемент, являясь по существу белитовым, обладает несколько замедленным твердением в начальные сроки и низким тепловыделением. Сульфатостойкий портландцемент выпускают М400. Остальные требования к нему предъявляются такие же, как и к портландцементу. Сульфатостойкий портландцемент используют для получения бетонов, находящихся в минерализованных и пресных водах.

Сульфатостойкий портландцемент с минеральными добавками выпускают М400 и 500. В качестве минеральной добавки вводят 10. 20% от массы цемента гранулированный доменный шлак или электротермофосфорный шлак или 5. 10% активных минеральных добавок осадочного происхождения (кроме глиежа). Клинкер для производства этого цемента не должен содержать соответственно более 5% С3А и MgO, а сумма С3А и C4AF не должна превышать 22%.

Сульфатостойкий шлакопортландцемент выпускают М300 и 400. Его получают путем совместного тонкого помола клинкера и гранулированного доменного шлака в количестве 21. 60% и небольшого количества гипса. В этом цементе содержание в клинкере С3А ограничивается до 8%, MgO — до 5%.

Пуццолановый портландцемент выпускают М300 и 400. Его получают путем совместного помола клинкера и 25. 40% от массы цемента активных минеральных добавок и гипсового камня. Клинкер для пуццоланового цемента не должен содержать более 8% С3А и не более 5% MgO. В остальном свойства его не отличаются от свойств портландцемента.

Читайте также  Что крепче алебастр или гипс?

Белый портландцемент получают из сырьевых материалов, имеющих минимальное содержание окрашивающих оксидов (железа, марганца, хрома). В качестве сырьевых материалов используют «чистые» известняки или мраморы и белые каолиновые глины, а в качестве топлива — газ или мазут, не загрязняющие клинкер золой. Помол цемента производят более тонкий: остаток на сите с сеткой № 008 должен быть не более 12%. Основным свойством белого цемента, определяющим его качество как декоративного материала, является степень белизны. По этому показателю белый цемент разделяют на три сорта: I, II и III. По прочности белый цемент выпускают М400 и 500. Портландцемент высшей категории качества должен обладать стабильными показателями прочности при сжатии, коэффициент вариации прочности портландцемента М400 не более 5%, а М500 не более 3%. Начало схватывания белого цемента должно наступать не ранее 45 мин, конец — не позднее 12 ч. Тонкость помола портландцемента должна быть такой, чтобы при просеивании сквозь сито с сеткой № 008 проходило не менее 88% массы просеиваемой пробы. Транспортируют и хранят белый цемент только в закрытой таре.

Цветные портландцементы получают путем совместного помола клинкера белого цемента со свето- и щелочестойкими минеральными красителями: охрой, железным суриком, ультрамарином, оксидом хрома, сажей. П. И. Боженов предложил для получения цветных цементов в процессе приготовления сырьевой cмеси вводить оксиды некоторых металлов (0,05. 1,0%). Эффективное окрашивание дают оксиды хрома (желто-зеленый цвет), марганца (голубой или бархатно-черный), кобальта (коричнеый). При этом получают цементы клинкеров редких цветов, трудно достигаемых при смешивании с пигментами. Цветные цементы производят трех марок: 300, 400 и 500.

Белые и цветные цементы применяют для изготовления цветах бетонов, растворов отделочных смесей и цементных красок. Тампонажный портландцемент изготовляют измельчением портландцементного клинкера, гипса с добавками или без них. Тампонажные цементы на основе портландцементного клинкера По вещественному составу в зависимости от содержания и вида добавок подразделяются на: тампонажный портландцемент бездобавочный, тампонажный портландцемент с минеральными добавками и тампонажный портландцемент со специальными добавками, регулирующими свойства цемента. Тампонажные цементы применяют для цементирования нефтяных газовых и специальных скважин. Тампонажный портландцемент бездобавочный применяют в условиях нормальных и умеренных температур (15. 100°С) и нормальной плотности цементного теста (1650. 1950 кг/м 3 ). Требования по устойчивости к воздействию агрессивных пластовых вод и объемным деформациям при твердении ие предъявляются. К портландцементам с минеральными добавками или со специальными добавками, или в совокупности с минеральными и специальными добавками предъявляются требования по температуре применения, по средней плотности цементного теста и устойчивости тампонажного камня к агрессивности пластовых вод (сульфатная, кислая, углекислая, сероводородная, магнезиальная и полиминеральная).

Скорость схватывания цемента.

По стандарту начало схватывания цемента должно наступать не ранее 45 мин, а конец — не позднее 12 ч от начала затворения. Как слишком быстрое, так и чересчур медленное схватывание существенный недостаток цемента. Если цемент слишком быстро схватывается, то он превращается в камневидное тело прежде чем его успевают употребить в дело. При работе с такими цементами необходимо быстро их транспортировать и укладывать после затворения водой, что очень трудно. Использование же медленно схватывающихся цементов часто сильно замедляет темпы строительства.

Скорость схватывания цемента зависит от ряда факторов. Большое значение имеет его минералогический состав, в особенности содержание трехкальциевого алюмината, который ускоряет схватывание. Степень обжига цементного клинкера также влияет на скорость схватывания. Сильно обожженный цемент схватывается медленнее, а слабо обожженный — быстрее, чем цемент нормального обжига. С увеличением тонкости помола ускоряется схватывание цемента вследствие большей удельной поверхности цементного порошка. Повышенное количество воды при затворении цемента замедляет его схватывание, а уменьшенное — ускоряет. С повышением температуры окружающей среды процесс схватывания ускоряется, а с понижением — замедляется. Магазинирование клинкера и силосование цемента замедляют схватывание, так как при хранении цемент реагирует с влагой и углекислой воздуха, в результате чего зерна цемента покрываются оболочкой, состоящей из углекислого кальция и других новообразований, а это затрудняет взаимодействие цемента с водой при затворении.

Для замедления сроков схватывания цемента к клинкеру при помоле добавляют гипс, однако количество его должно быть таким, чтобы содержание SО3 в цементе не превышало 3,5%, что в пересчете на CaS04*2Н2О составляет -7,53%, а на CaS04*О,5Н2О — 6,34%. Следует всегда учитывать, что сам клинкер содержит некоторое количество SО3. Величина оптимальной дозировки гипса зависит от минералогического состава клинкера, тонкости помола и некоторых других факторов и в ряде случаев приближается к верхнему пределу допускаемого стандартом, а в отдельных случаях, при большом содержании С3А и весьма тонком помоле, может даже превышать его. Объясняется это тем, что гипс добавляют цементу в первую очередь для того, чтобы, вступая во взаимодействие с трехкальциевым алюминатом, образовывать в начальный период твердения (до получения жесткой недеформирующейся структуры твердеющего цементного камня) гидросульфоалюминат, что регулирует (замедляет) сроки схватывания цемента и улучшает ряд его свойств. Наряду с этим следует учитывать, что при твердении цемента, содержащиеся в нем алюмоферриты хотя и медленнее, но также вступают во взаимодействие с гипсом, связывая определенное его количество в комплексные новообразования. Количество гипса, вступающего в реакцию с алюминатами и алюмоферритами кальция, зависит от тонкости помола цемента, температуры его при выходе из мельницы, режима охлаждения и связанного с этим содержания в клинкере стекловидной фазы степени присадки золы и ее состава, а также от ряда других производственных факторов. Поэтому для каждого завода оптимальная дозировка гипса будет иной.

Большой избыток гипса может привести к появлению внутренних напряжений, иногда вплоть до образования трещин вследствие запоздалого появления гидросульфоалюмината кальция в уже затвердевшем цементном камне за счет твердых исходных компонентов. При недостаточном количестве гипса не удается использовать все заложенные в цементе возможности для быстрого твердения; такой цемент чересчур быстро схватывается. Следует отметить, что добавка гипса также благоприятно влияет на процесс твердения содержащихся в цементе силикатов кальция. Поэтому ограничено и минимальное содержание SО3 не менее 1,5%.

Серьезное значение имеет нагревание цемента при помоле, так как вследствие развивающейся при этом температуры гипс в той или иной степени переходит из двуводного в полуводный, т. е. в модификацию, значительно более растворимую в воде, что изменяет условия твердения цемента.

Дозировку добавляемого гипса целесообразно определять исходя из того его количества, которое связывается в первые сроки твердения, когда реакции происходят за счет растворенных в воде компонентов. За оптимальную дозировку гипса, в случае твердения при обычных температурах, можно принять то наибольшее его количество, которое практически может быть химически связано в твердеющем цементе в течение первых 24 ч после затворения цемента водой.

Добавками, ускоряющими сроки схватывания, являются: хлористый кальций, соляная кислота, глиноземистый цемент, растворимое стекло, углекислый натрий (сода) и ряд других. К замедлителям схватывания наряду с гипсом относятся слабый раствор серной кислоты, сернокислое окисное железо и ряд других.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector