Определение осадки фундамента методом послойного суммирования

Определение осадки фундамента методом послойного суммирования

Метод послойного суммирования. Расчет осадки слоистых оснований выполняется методом послойного суммирования, в основу которого положена выше разобранная задача (основная задача)

Расчет осадки слоистых оснований выполняется методом послойного суммирования, в основу которого положена выше разобранная задача (основная задача). Сущность метода заключается в определении осадок элементарных слоев основания в пределах сжимаемой толщи от дополнительных вертикальных напряжений σZP, возникающих от нагрузок, передаваемых сооружениям.

Так как в основу этого метода положена расчетная модель основания в виде линейно-деформируемой сплошной среды, то необходимо ограничить среднее давление на основание таким пределом, при котором области возникающих пластических деформаций лишь незначительно нарушают линейную деформируемость основания, т.е. требуется удовлетворить условие

Для определения глубины сжимаемой толщи Нс вычисляют напряжения от собственного веса σZqи дополнительные от внешней нагрузки σZP.
Нижняя граница сжимаемой толщи ВС основания принимается на глубине z = Нс от подошвы фундамента, где выполняется условие

т.е. дополнительные напряжения составляют 20% от собственного веса грунта.

При наличии нижеуказанной глубины грунтов с модулем деформации Е≤5 МПа должно соблюдаться условие

Для оснований гидротехнических сооружений по СНиП 2.02.02—85 «Основания гидротехнических сооружений» нижняя граница активной зоны находится из условия

Расчет осадкиудобно вести с использованием графических построений в следующей последовательности (рис. 7.11):

  • строят геологический разрез строительной площадки на месте рассчитываемого фундамента;
  • наносятся размеры фундамента;
  • строятся эпюры напряжений от собственного веса грунта σZg и дополнительногоσZP от внешней нагрузки;
  • определяется сжимаемая толща Нс;
  • разбивается Нс на слои толщиной hi≤0,4b;
  • определяется осадка элементарного слоя грунта по формуле

Тогда полную осадку можно найти простым суммированием осадок всех элементарных слоев в пределах сжимаемой толщи из выражения

где β— безразмерный коэффициент, зависящий от коэффициента относительных поперечных деформаций, принимаемый равным 0,8; hi— высота i-го слоя; Ei — модуль деформации i-го слоя грунта;

— среднее напряжение i-го элементарного слоя.

Метод послойного суммирования позволяет определять осадку не только ценфальной точки подошвы фундамента. С его помощью можно вычислить осадку любой точки в пределах или вне пределов фундамента. Для этого пользуются методом угловых точек и строится эпюра напряжений вертикальной, проходящей через точку, для которой требуется расчет осадки.

Рис. 7.11. Расчетная схема для определения осадки методом послойного суммирования: DL — отметка планировки; NL — отметка поверхности природного рельефа; FL — отметка подошвы фундамента; ВС — нижняя граница сжимаемой толщи; Нс — сжимаемая толща

Таким образом, метод послойного суммирования в основном используется при расчете небольших по размерам фундаментов зданий и сооружений и при отсутствии в основании пластов очень плотных малосжимаемых грунтов.

Расчет осадки методом послойного суммирования

где b — безразмерный коэффициент, равный 0,8; szp i – среднее значение дополнительного вертикального нормального напряжения в i-м слое грунта, равное полусумме указанных напряжений на верхней zi1 и нижней zi границах слоя по вертикали, проходящей через центр подошвы фундамента (рис. 6.1); hi и Ei – соответственно толщина и модуль деформации i-го слоя; h – число слоев.

Если в пределах сжимаемой толщи (Hc) имеется водоупорный слой, то при построении эпюры напряжений szq действие взвешивающего действия воды на величину удельного веса грунтов не учитывается. В противном случае взвешивающее действие воды учитывается (табл. 6.1).

Расчет осадки методом послойного суммирования - №2 - открытая онлайн библиотека

Рис. 6.1. Распределение вертикальных нормальных

напряжений в грунтовой толще:

DL – отметка планировки; NL – отметка поверхности природного рельефа; FL – отметка подошвы фундамента; WL — уровень подземных вод; BC – нижняя граница сжимаемой толщи; d и dn – глубина заложения фундаментов соответственно от уровня планировки и поверхности природного рельефа; b – ширина фундамента; р – среднее давление по подошве фундамента; szq и szq.o – вертикальные напряжения от собственного веса грунта на глубине (dn +z) и на уровне подошвы; ро – дополнительное давление по подошве фундамента; szр и szр.o – дополнительные вертикальные напряжения от внешней нагрузки на глубине z от подошвы фундамента; Hc – глубина сжимаемой толщи

Построение эпюр напряжений szр и szр.o производится в следующей последовательности:

а) с левой стороны табл. 6.1 откладываются мощности геологических слоев с нанесением уровня грунтовых вод (УГВ);

б) рядом располагают вертикальный разрез фундамента, для которого рассчитывается осадка;

в) толщину элементарных слоев принимают равной 0,2b, что позволяет принимать табличный коэффициент a без интерполяции (прил. 1). Однако при толщине элементарных слоев более 0,6 м значение 0,2b необходимо уменьшить до 0,1b;

г) высота сжимаемой толщи Hc равна расстоянию, отсчитываемому от горизонтальной площади, где пересекаются эпюры напряжений szр и 0,1szq – при модуле деформации грунта в точке пересечения более 5 МПа;

Расчет осадки методом послойного суммирования - №3 - открытая онлайн библиотека

д) при расчете осадки фундаментов, расположенных на расстоянии не менее 6 м, необходимо учитывать взаимное их влияние. В связи с этим к эпюре дополнительных напряжений, построенной для проектируемого фундамента, достраивается и суммируется добавочная часть, являющаяся следствием влияния соседнего фундамента. Напряжения от влияния соседних фундаментов определяются по методу угловых точек. Для этого площади подошвы фундаментов в плане делят на прямоугольники так, чтобы центральная точка проектируемого фундамента была общей для всех прямоугольников и являлась угловой для каждого из них. Коэффициент a для расчета по методу угловых точек применяется по табл. 4. При этом значения определяются из выражения

Расчетная осадка фундамента должна быть меньше предельно допустимой величины, приведенной в прил. 4 СНиП 2.02.01-83*:

Определение осадки фундамента методом послойного суммирования

Расчёт осадки фундамента происходит из условия:

где величина конечной осадки отдельного фундамента, определяемая расчётом;

предельная величина осадки фундаментов зданий и сооружений, принимаемая по табл. В.4 [1] (для данного здания ).

Для определения осадки фундамента необходимо составить схему, на которой слева от фундамента даны инженерно-геологические условия и характеристики грунтов. Затем от оси фундамента влево откладываем ординаты эпюры вертикальных напряжений от собственного веса грунта. Причём построение эпюры следует начинать от отметки поверхности природного рельефа при планировке подсыпкой или срезкой. Ординаты эпюры вычисляются в характерных горизонтальных сечениях (на нижней границе каждого слоя, под подошвой фундамента, на уровне грунтовых вод) по формуле:

где удельный вес i-го слоя грунта, ;

толщина i-го слоя грунта, .

Удельный вес грунтов, залегающих ниже уровня подземных вод (WL), но выше водоупора, определяется с учётом взвешивающего действия воды по формуле:

где удельный вес частиц i-го слоя грунта, ;

удельный вес воды,

коэффициент пористости i-го слоя грунта.

Удельный вес грунтов, залегающих ниже уровня подземных вод, но выше водоупора, должен определяться с учётом взвешивающего действия.

Для песка мелкого ниже WL (не является водоупором):

Для песка средней крупности ниже WL (не является водоупором)

Находим ординаты эпюры вертикальных напряжений от собственного веса грунта в характерных горизонтальных сечениях:

На отметке уровня грунтовых вод (WL):

На подошве 2-го слоя (песок мелкий):

На границе водоупора (суглинок полутвердый):

На подошве фундамента (суглинок полутвердый):

На подошве 3-го слоя (суглинок полутвердый):

На подошве 4-го слоя (песок мелкий):

На границе водоупора (суглинок полутвердый):

На подошве 5-го слоя (суглинок полутвердый):

Дополнительное (к природному) вертикальное напряжение в грунте под подошвой фундамента вычисляется по формуле:

где среднее фактическое давление под подошвой фундамента,

вертикальное напряжение от собственного веса грунта на уровне подошвы фундамента от веса вышележащих слоёв, .

Для построения эпюры дополнительных вертикальных напряжений толща грунта ниже подошвы фундамента в пределах глубины, приблизительно равной-х кратной ширине фундамента, разбивается на ряд слоёв, мощностью не более . Если в пределах элементарного слоя попадают два слоя грунта, то эти участки рассматриваются отдельно. Принимаем:

Величина дополнительного вертикального напряжения для любого сечения ниже подошвы фундамента вычисляется по формуле:

где коэффициент, принимаемый по ГОСТ 2.02.01.-83 в зависимости от формы подошвы фундамента, соотношения сторон прямоугольного фундамента и относительной глубины равной (таблица В.5 [4]);

Построив эпюры и , определяем нижнюю границу сжимаемой (активной) зоны грунта, которая находится на глубине ниже подошвы фундамента, где .

Осадка отдельного фундамента на основании, расчётная схема которого принята в виде линейно-деформируемого полупространства с условным ограничением глубины сжимаемой толщи, определяется по формуле:

где коэффициент, корректирующий упрощённую схему расчёта,

число слоёв, на которое разделена по глубине сжимаемая толща основания;

толща i-го слоя грунта, ;

среднее дополнительное (к бытовому) напряжение в i-ом слое грунта, равное полусумме дополнительных напряжений на верхней и нижней границах i-го слоя, ;

модуль деформации i-го слоя, .

Осадка основания фундамента получается суммированием величины осадки каждого слоя. Она не должна превышать предельно допустимые осадки сооружения.

где предельная деформация основания сооружения(таб. В.4 [4]).

Для удобства вычисления осадки фундамента расчёт ведём в табличной форме (табл. 3.1).

Расчет осадки основания. Общие положения

Проектирование основания следует выполнять на основе существующих нормативных документов в частности СНиП 2.02.01-83* «Основания зданий и сооружений» или СП 50-101-2004 «Проектирование и устройство оснований и фундаментов зданий и сооружений». Ниже мы рассмотрим, на основании каких положений можно определить осадку основания.

Для начала выясним, что подразумевается под термином — осадка основания (обозначается литерой «s«).

Осадка — это деформация, происходящая в результате уплотнения грунтов, залегающих ниже фундамента, под воздействием нагрузки от здания или сооружения, иногда под воздействием собственного веса вышележащего грунта.

При этом существенного изменения структуры грунтов не происходит и потому такую деформацию можно условно считать упругой. Это означает, что давление на основание (нагрузка от фундамента) должно быть меньше расчетного сопротивления грунта.

Если давление на грунт будет больше расчетного сопротивления грунта, то деформация грунтов будет уже пластической, т.е. не восстанавливаемой со временем даже после снятия нагрузки (например, сноса здания) и приведет к существенному изменению структуры грунтов (как минимум тех, которые находятся ближе всего к подошве фундамента). Такая деформация называется просадкой и будет она значительно больше чем осадка, вот только рассчитать просадку из-за пластической деформации даже приблизительно не возьмется никто (просадка при замачивании просадочных грунтов и по другим возможным причинам, здесь не рассматривается).

Методы уплотнения грунтов перед началом строительства здесь также не рассматриваются. Тем не менее уплотнение грунта перед началом устройства фундамента позволит уменьшить итоговую осадку основания, определить которую мы и собираемся.

Основные положения, принимаемые при расчете осадки основания:

1.

Теоретически для расчета осадки основания достаточно просто знать закон Гука, согласно которому

σ = ЕΔh/h или Δh = σh/E (391.1)

где σ — нормальное напряжение, действующее на стержень, измеряемое в МПа или кгс/см 2 .

Примечание: нормальные напряжения при рассмотрении оснований часто называются вертикальными нормальными, а потом и просто вертикальными. Сути дела это не меняет, однако позволяет лучше представить направление действия напряжений.

Е — модуль упругости стержня, также измеряемый в МПа или кгс/см 2 , h — высота (длина) стержня, Δh — величина деформации стержня, которую можно было бы рассматривать как осадку основания, если бы мы действительно имели под подошвой фундамента некий стержень конечной длины и постоянного по длине сечения. Вместо это у нас под фундаментом весь земной шар, состоящий из множества пород, слоев грунтов, грунтовых вод и пр. Поэтому:

2.

При расчете осадки основания используется модель линейно деформируемого полупространства под подошвой фундамента.

3.

В этом линейно деформируемом полупространстве давление фундамента на основание будет чем глубже, тем меньше из-за перераспределения напряжений на единицу площади по мере заглубления. Однако зависимость между глубиной и распределением напряжения — не линейная. Например для точечного фундамента с достаточно малой площадью подошвы давление на основание можно условно рассматривать как сосредоточенную нагрузку в вершине конуса. И чем больше высота конуса, тем больше площадь, на которую будет распределяться эта нагрузка. Таким образом конус — это как бы и есть деформируемый стержень переменного сечения. Давление фундамента на основание обозначается как σq и определяется, как дополнительное вертикальное напряжение. На рассматриваемой глубине z это напряжение обозначается как σzq (см. рисунок 391.1)

Примечание: в СНиПе 2.02.01-83 нагрузка на основание обозначается литерой р, в теоретической механике нагрузка чаще обозначается литерой q и мне такое обозначение ближе. Впрочем принципиального значения это не имеет.

4.

Помимо давления от фундамента на нижележащие слои грунтов давят вышележащие слои грунтов. Это давление обозначается как σγ и определяется, как вертикальное напряжение от собственного веса грунта. Предполагается, что вертикальное напряжение от собственного веса грунта прямо пропорционально рассматриваемой глубине и объемному весу грунта

где γ — объемный вес сжимаемого грунта, находящегося ниже подошвы фундамента, h — высота слоя сжимаемого грунта

Примечание: В СНиПе 2.02.01-83 это давление обозначается как σg, в СП 50-101-2004 — как σγ, но опять же принципиального значения это не имеет. Мне больше нравится обозначение σγ.

5.

Так как по мере заглубления вертикальные напряжения от фундамента уменьшаются, а от вышележащих слоев грунта увеличиваются, то соответственно и деформации, вызываемые этими напряжениями, изменяются. Т.е. чем глубже, тем меньше будет влияние нагрузки от фундамента на осадку основания, к тому же на больших глубинах основание и так уже осело под постоянно действующей нагрузкой от вышележащих грунтов, конечно в том случае, если эти грунты находятся в таком состоянии достаточно давно, желательно тысячи или даже миллионы лет. Таким образом нет необходимости рассматривать толщу грунтов бесконечно большой высоты. Нижняя граница сжимаемой толщи принимается на глубине z = Hc, где выполняется условие σzq = 0.2σ (см. рис. 391.1).

Примечание: если нижняя граница сжимаемой толщи находится в грунте с модулем деформации Е < 5 МПа (50 кгс/см 2 ) или такой слой залегает непосредственно ниже определенной глубины z = Hc, то нижняя граница сжимаемого слоя определяется, исходя из условия σzq = 0.1σ.

При этом изменение значения вертикальных напряжений в зависимости от глубины принимается согласно следующей расчетной схеме:

схема распределения нормальных напряжений в линейно-деформируемом полупространстве

Рисунок 391.1 Схема распределения вертикальных напряжений в линейно-деформируемом полупространстве

DL — отметка планировки (уровень грунта после окончания строительства);

NL — отметка поверхности природного рельефа (уровень грунта до начала строительства);

FL — отметка подошвы фундамента;

WL — уровень подземных вод;

В.С — нижняя граница сжимаемой толщи, определяемая расчетом;

d и dn глубина заложения фундамента соответственно от уровня планировки и от поверхности природного рельефа;

b — ширина фундамента;

q — среднее давление под подошвой фундамента;

q — дополнительное давление на основание;

σ и σzγ, — вертикальное напряжение от собственного веса грунта на глубине z от подошвы фундамента и на уровне подошвы;

σzq и σzq, — дополнительное вертикальное напряжение от внешней нагрузки на глубине z от подошвы фундамента и на уровне подошвы;

Нс — глубина сжимаемой толщи, определяемая расчетом.

6.

Так как на значение дополнительного вертикального напряжения кроме рассматриваемой в п.3 глубины также влияет ширина фундамента и рассматриваемая точка подошвы фундамента, то значение нагрузки от фундамента на рассматриваемой глубине z рекомендуется определять по следующим формулам:

σzq = aqo (391.2.1)

а — коэффициент, принимаемый по таблице 391.1 в зависимости от формы подошвы фундамента, соотношения сторон прямоугольного фундамента и относительной глубины, равной: x = 2z/b при определении σzq и x = z/b при определении σzq,c. Приведенные в таблице 391.1 значения коэффициента а — результат достаточно сложных расчетов для модели линейно деформируемого полупространства, что позволяет проектировщику сэкономить множество времени, сил и вообще значительно упростить расчет (хотя поначалу так не кажется).

Таблица 391.1

коэффициент а для определения дополнительного вертикального давления на грунт

qo = q — σzγ,0 — дополнительное вертикальное давление на основание (для фундаментов шириной b ≥ 10 м принимается q = q)

q — среднее давление под подошвой фундамента (среднее потому, что в зависимости от формы фундамент может рассматриваться как балка на упругом основании и для такой балки распределение давления по ширине подошвы может быть не равномерным. Таким образом принятие среднего значения также позволяет упростить расчеты).

szγ,0 — вертикальное напряжение от собственного веса грунта на уровне подошвы фундамента. При планировке срезкой принимается σzγ,0 = γ’d (в данном случае следует помнить, что рисунок 391.1 является схематическим и отметка поверхности рельефа может быть выше отметки планировки, а не ниже, как показано на рисунке), при отсутствии планировки и планировке подсыпкой σzγ,0 = γ’dn, где γ’ — удельный вес грунта, расположенного выше подошвы фундамента, d и dn — показаны на рис.391.1.

Примечания к таблице 391.1:

1. b — ширина или диаметр фундамента, l — длина фундамента.

2. Для фундаментов, имеющих подошву в форме правильного многоугольника с площадью F, значения a принимаются как для круглых фундаментов радиусом r = √ F/п .

3. Для промежуточных значений x и η коэффициент a определяется по интерполяции.

7.

Согласно вышеизложенному определение значения дополнительного вертикального напряжения в начале и конце рассматриваемого слоя грунта не представляет большой проблемы и в итоге определение осадки s выполняется методом послойного суммирования по следующей формуле:

(391.3)

β — безразмерный коэффициент, принимаемый равным 0.8.

σzq,i — среднее значение дополнительного вертикального нормального напряжения в i-м слое грунта, равное полусумме указанных напряжений на верхней zi-1 и нижней zi границах слоя по вертикали, проходящей через центр подошвы фундамента.

hi и Еi — соответственно высота и модуль упругости i-го слоя грунта.

n — количество рассматриваемых слоев основания.

8.

Чтобы определить высоту сжимаемого слоя грунта Нс, как правило составляется таблица, в которую вносятся значения дополнительного вертикального напряжения и напряжения от собственного веса грунта в начале и в конце рассматриваемого слоя (пример составления подобной таблицы приводится отдельно).

9.

Суммарная осадка, определенная по формуле 391.3, не должна превышать предельных значений, приведенных в таблице 391.2, т.е s ≤ šu:

Таблица 391.2

предельные деформации основания 1 часть

предельные деформации основания 2 часть

Вот в принципе и все основные положения, принимаемые при расчете осадки основания (и соответственно фундамента дома). Пример практического использования этих достаточно абстрактных формул и положений приводится отдельно.

На этом пока все.

Доступ к полной версии этой статьи и всех остальных статей на данном сайте стоит всего 30 рублей. После успешного завершения перевода откроется страница с благодарностью, адресом электронной почты и продолжением статьи. Если вы хотите задать вопрос по расчету конструкций, пожалуйста, воспользуйтесь этим адресом. Зараннее большое спасибо.)). Если страница не открылась, то скорее всего вы осуществили перевод с другого Яндекс-кошелька, но в любом случае волноваться не надо. Главное, при оформлении перевода точно указать свой e-mail и я обязательно с вами свяжусь. К тому же вы всегда можете добавить свой комментарий. Больше подробностей в статье «Записаться на прием к доктору»

Для терминалов номер Яндекс Кошелька 410012390761783

Номер карты Ymoney 4048 4150 0452 9638 SERGEI GUTOV

Для Украины — номер гривневой карты (Приватбанк) 5168 7422 4128 9630

>hi и Еi — соответственно высота и модуль упругости i-го слоя грунта

hi и Еi- соответственно толщина и модуль ДЕФОРМАЦИИ i-го слоя грунта;

Все верно, модуль деформации. Тем не менее, смысл я думаю, был и так понятен.

А если я рассчитываю одноэтажный дом 10х10, то какая у меня средняя осадка?

Это зависит от нагрузки на основание и физико-механических характеристик основания. В целом для одноэтажного дома осадка должна быть относительно небольшой.

Примечание: Возможно ваш вопрос, особенно если он касается расчета конструкций, так и не появится в общем списке или останется без ответа, даже если вы задатите его 20 раз подряд. Почему, достаточно подробно объясняется в статье «Записаться на прием к доктору» (ссылка в шапке сайта).

Порядок расчета осадки фундаментов

Разрушение стен дома от неравномерной осадки фундамента

Разрушение стен дома от неравномерной осадки фундамента

Любое строение со временем подвержено проседанию. Фундамент здания должен осесть в расчётных пределах. Если основание дома опустилось равномерно по всей площади опирания, то расчёт осадки фундамента произведён правильно. В противном случае неравномерное проседание фундамента или свайного поля может привести к деформации несущих конструкций сооружения, что приведёт к повреждению строения. Особенно велик риск неравномерного проседания оснований большой площади опирания, поэтому необходимо точно рассчитать допустимую осадку основания здания.

Осадка фундамента

Неравномерное проседание опорных конструкций зданий и сооружений является следствием допущенных дефектов в строении фундаментов различных видов. Осадка фундамента происходит в течение некоторого времени после окончания строительства объекта. Важно, чтобы осадка основания здания была равномерной и в пределах допустимой нормы.

Существует многочисленные причины, вызывающие неравномерное опускание фундамента вследствие сжатия грунтового основания под подошвой здания. Таковыми являются:

  • несанкционированная экономия материалов на возведении основания здания;
  • использование низкоквалифицированного труда;
  • в результате произведённого самостоятельного расчёта неверно определены глубина заложения фундамента, уровень грунтовых вод толщина промерзания почвы;
  • отсутствие дренажной системы;
  • неправильное определение сопротивления грунтового основания приведёт к чрезмерному проседанию основания здания.

На строительстве любого крупного объекта необходимо правильно рассчитать осадку фундамента.

В данной статье основное внимание уделено тому, как правильно сделать расчёт осадки свайного фундамента и ленточного основания здания.

Осадка фундамента

На протяжении глубины грунтового основания почва может быть неоднородна. Слои грунта могут оказаться с различными геологическими характеристиками. Для определения полной и конечной осадки строения применяют метод послойного суммирования.

Суть данного метода заключается в том, что определяют величину деформации слоёв почвы, находящихся в активной зоне воздействия нагрузки от здания. Важно, чтобы полученные данные проседания здания не превышали критических нормативных показателей.

Предельно допустимые нормы осадки фундаментов

Первоначальная просадка нового построенного сооружения (1-я категория технического состояния) на однородном грунтовом основании допустима в пределах 10 – 12 см.

При неоднородном составе грунте допустимое проседание зданий 1 категории без последствий составляет 5 см. Для домов 2 и 3 категории (строения с большим сроком эксплуатации) допустимо проседание не более 2 – 3 см.

Разрушение фундамента вследствие чрезмерной осадки дома

Разрушение фундамента вследствие чрезмерной осадки дома

Любое дополнительное опускание здание чревато появлением трещин в основании и в стенах строения. Достаточно опуститься сооружению ещё на 2 см и это сразу отразится на состоянии несущих конструкций.

Расчёт осадки ленточного фундамента

Кроме метода послойного суммирования существуют различные методики определения величины проседания здания. При условиях отдельно стоящего строения с учётом сопротивления грунтового основания и других сил, только использование метода послойного суммирования будет наиболее верным расчётом.

Способ основан на создании эпюр напряжений в многослойной почве по каждой вертикальной оси.

Схемы расчётов по методу сложения усадки слоёв почвы

Схемы расчётов по методу сложения усадки слоёв почвы

Определение осадки ленточного фундамента производится с целью, чтобы:

  • определить величину просадку монолитной ленты с присоединёнными другими основаниями;
  • выполнить точный расчёт осадки основания здания, возведённого из разных материалов;
  • определить осадочный характер и физические свойства основания здания, которые связаны с изменением показателя деформации по мере увеличения глубины заложения фундамента.

Данная методика расчета определяет показатели основания по каждому сочетанию вертикальных осей, без учёта угловых переменных, используя периферийные значения и центральный показатель. Сделать это возможно при залегании по периметру основания строения равномерных структурных слоёв почвы.

Схема построения графика напряжений по группам вертикальных осей

Схема построения графика напряжений по группам вертикальных осей

Обозначения по СНиП 2.02.01-83:

  • S — показатель осадки;
  • zn – средняя величина напряжения вдоль вертикальной оси в слое «n»;
  • hn, En – толщина сжатия и индекс деформации слоя «n»;
  • n – удельная масса почвы в «n»;
  • hn — высота слоя «n»;
  • b = 0,8 – постоянный коэффициент.

Ширина ленточного монолитного фундамента – 1200 мм (b), глубина заложения составит 1800 мм (d).

Видео «Расчёт сопротивления грунта»:

Пример определения величины осадки ленточного фундамента

Общая нагрузка от веса здания на почву составит 285000 кг•м −1 •с −2 . По каждому слою отмечают такие значения:

  1. Верхний слой — сухая почва (песок мелкой фракции, с показателями пористости e 1 = 0,65; плотностью y 1 = 18,70 кН/м³, индексом сжатия Е 1 = 14400000 кг•м −1 с −2) .
  2. Средний слой – мокрый крупный песок с соответствующими показателями: e2= 0,60, γ2 = 19,20 кН/м³; Е2 = 18600000 кг•м −1 с −2 .
  3. Нижний слой грунта – суглинок с соответствующими значениями: e3 = 0,180; y3 = 18,50 кН/м³; Е 3 = 15300000 кг•м −1 с −2 .

Результаты исследований грунта взяты в местном геолого-геодезическом управлении. Грунтовые воды на территории застройки находятся на расстоянии от поверхности земли 3800 мм. глубина залегания грунтовых вод такой величины не имеет значения даже для заглубленного фундамента здания. В этом случае воздействие грунтовых вод на осадку здания считают мизерным, то есть практически никаким.

Метод послойного суммирования базируется на исследовании всех эпюр напряжений в грунтовом массиве вдоль вертикальных осей.

Для нанесения графика эпюр и расчета критических нагрузок на грунт производят действия согласно СНиП 2.02.01-83.

В результате получают следующие показатели по каждому слою почвы: S1 = 11,5 мм; S2 = 13,7мм; S3 = 1,6 мм.

Суммарное проседание основания здания составит:

Сравнивая полученные результаты с определёнными нормативами СНиП, делают вывод, что величина осадки не превышает предельных норм.

Расчёт осадки свайного основания

Определяют осадки свайного фундамента методом послойного суммирования.

Вид свайного основания здания

Вид свайного основания здания

Полный расчёт осадки свайного основания выполняется проектной организацией на протяжении от нескольких дней до 2-х недель. Проектировщики пользуются специальными компьютерными программами. Человеку, не имеющему специального образования, сделать это самостоятельно практически невозможно.

Произвести расчёт осадки свайного основания небольшого частного дома можно упрощённым способом, что под силу каждому застройщику.

Используя схемы расположения различных видов свай и расчётных формул, указанных в СП 24.13330.2011, можно определить как величину осадки одиночной сваи, так и степень проседания всего свайного поля.

Применяют различные методики определения величин осадки разных типов фундаментов, в основном, для крупных объектов промышленного и гражданского назначения.

Читайте также  Гидроизоляция фундамента рулонными материалами технониколь
Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector